PHYSICAL / INORGANIC **CHEMISTRY**

DPP No. 7

Total Marks: 37

Max. Time: 41 min.

Topic: Coordination Compounds

Type of Questions M.M., Min. Single choice Objective ('-1' negative marking) Q.1 to Q.5 (3 marks, 3 min.) [15, 15] [6, 6] Comprehension ('-1' negative marking) Q.6 to Q.7 (3 marks, 3 min.) Subjective Questions ('-1' negative marking) Q.8 to Q.11 (4 marks, 5 min.) [16, 20]

- 1. A coordination compound of cobalt has the molecular formula containing five ammonia molecules, one nitro group and two chlorine atoms for one cobalt atom. One mole of this compound produces three moles of ions in an aqueous solution. The ageuous solution on treatment with an excess of AgNO₃ gives two moles of AgCl as a precipitate. The formula of this complex would be :
 - (A) Co[NH₃)₄NO₂CI][NH₃CI]

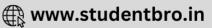
(B) [Co(NH₃)CI] [CINO₃]

(C) $[C_0(NH_3)_5NO_3]CI_3$

- (D) $[Co(NH_3)_5][(NO_3)_5CI_3]$
- 2. A complex with the molecular formula CrCl₃.6H₂O is such that 1/3 of the total chloride is precipitated by adding AgNO_a to its aqueous solution. Then, which of the following is its best representation:

(A) CrCl₃.6H₂O

(B) [Cr(H₂O)₃ Cl₃].3H₂O


(C) $[CrCl_2(H_2O)_4]Cl.2H_2O$

- (D) [CrCl(H₂O)₅]Cl₂.H₂O
- 3. Match list I with list II and select the correct answer:

List (I)				List (II)
(Equiv. conductance at infinite dilution)				(Formula)
(1) 229				(a) [Pt(NH ₃) ₅ Cl]Cl ₃
(2) 97				(b) $[Pt(NH_3)_3Cl_3]Cl$
(3) 404				(c) $[Pt(NH_3)_4Cl_2]Cl_2$
(4) 523				(d) $[Pt(NH_3)_6]CI_4$
The code:				
	1	2	3	4
(A)	е	а	b	d
(B)	а	С	d	b
(C)	а	d	С	b
(D)	С	b	а	d

- 4. Which of the following complex ions obeys Sidgwick's effective atomic number (EAN) rule?
 - (A) [Fe(CN)₆]³⁻
- (B) [Fe(CN)_e]⁴⁻
- (C) $[Cr(NH_3)_6]^{3+}$
- (D) [Ni(en)₃]²⁺
- 5. In which of the following complexes the effective atomic number is not equal to the atomic number of a inert gas
 - (A) Ni(CO),
- (B) $[Co(NH_3)_e]^{3+}$
- (C) [Fe(CN)₆]⁴⁻
- (D) [CuCl₂]-

Comprehension # (Q.6 to Q.7)

The compound
$$(en)_2 Co \stackrel{NH_2}{\searrow} Co(en)_2 (SO_4)_2$$

- **6.** Correct IUPAC name of the above compound is :
 - (A) μ-amido-μ-hydroxidobis(bis(ethylenediammine)cobalt(III)) sulphate
 - (B) bis(ethylenediamine)cobalt(III) $-\mu$ -amido $-\mu$ -hydroxidobis(ethylenediamine)cobalt(III) sulphate
 - (C) Both A & B
 - (D) Neither (A) nor (B)
- 7. In the above compound bridging ligand(s) is/are:
 - (A) NH₂- only
- (B) OH- only
- (C) Both NH₂⁻ and OH⁻
- (D) en and NH₂-
- **8.** Two compounds have the molecular formula, Co(H₂O)₄(NO₂)₃. In aqueous solution, one of these compounds does not conduct electricity while the other does. Write the possible structures of these two compounds.
- **9.** Explain the following, giving appropriate reasons.
 - (i) Out of K_4 [Fe(CN)₆] and K_3 [Fe(NH₃)₆] solutions, the former has higher value of molar conductivity.
 - (ii) $[Pt(NH_3)_2 Cl_2]$ and $[Pt(NH_3)_6] Cl_4$ differ in their electrolytic conductance
 - (iii) The value of molar conductivity of the aqueous solution of [CoCl₃ (NH₃)₃] is zero.
- **10.** Arrange the following complexes in the increasing order of their electrical conductivity:

$$[Co(NH_3)_3 Cl_3]$$
, $[Co(NH_3)_6] Cl_3$ and $[Co(NH_3)_5 Cl]Cl$.

11. The compound CoCl₃.4NH₃ contains only one Cl⁻ ion that is precipitated immediately on the addition of Ag⁺ ions. Draw the structure of the compound on the basis of Werner's coordination theory.

Answer Key

DPP No. #7

- 1. C 2. C 3. D 4. B 5. D
- 6. C 7. C
- Co (H₂O)₄ (NO₂)₃ [Co(H₂O)₃ (NO₂)₃]. H₂O does not conduct electricity because no ion is generated in aq. sol. [Co (H₂O)₄ (NO₂)₃] NO₂ will conduct electricity.
- (i) K₄ [Fe(CN)₆] will produce 5 ions while K₃ [Fe(CN)₆] will produce 4 ions in aq. solution. So, higher molar conductivity.
 - (ii) $[Pt(NH_3)_2CI_2]$ produce no ions but $[Pt(NH_3)_6]CI_4$ produce 5 ions in aqueous solution. So, higher molar conductivity.
 - (iii) [CoCl_a(NH_a)_a] will not produce any ion in aq. solution. So, conductivity, is zero.
- Electrical conductivity depends on number of ions produced. [Co(NH₃)_a] Cl₃ > [Co(NH₃)₅ Cl]Cl > [Co(NH₃)₃ Cl₃]
- CoCl₃ 4NH₃
 Since only one Cl⁻ ion is precipiteated by Ag⁺ ion. This implies that only one Cl⁻ ion outside coordination sphere.

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #7

- Co (NH₃)₅ NO₂ CI₂
 1 mole of this complex gives 3 moles of ions in aq. solution.
 1 mole of this complex gives 2 mole of AgCI ⇒ 2CI⁻ outside the coordination sphere.
 ∴ [Co(NH₃)₅ NO₂] CI₂
 Co (NH₃)₅ NO₂ CI₂
- 2. $[Cr Cl_2 (H_2O)_4] Cl.2H_2O$ will liberate $\frac{1}{3}$ of the total chloride ions for precipitation.
- 3. Eq. conductance at infinite dilution depends on no. of ions produced in the sol.
 [Pt(NH₃)₆] Cl₄ > [Pt(NH₃)₃ Cl]Cl₃ > [Pt(NH₃)₄ Cl₂] Cl₂ > [Pt (NH₃)₃ Cl₃] Cl \(\to \) no. of ions produced in the solution.
- (B) E.A.N. = 26 2 + 12 = 36
- In [CuCl_a] = EAN = 28 + 4 = 32
- 6. According rule of bridging ligand(s) naming
- Bridging ligands are NH, and OH

